Given the equation \(S = \frac{D}{T}\), change the subject of the formula to D.
\[D = ST\]
\[D = \frac{S}{T}\]
\[D = \frac{T}{S}\]
Given the equation, \(C = 2\pi r\), change the subject of the formula to r.
\[r = 2C\pi\]
\[r = \frac{{C\pi }}{2}\]
\[r = \frac{C}{{2\pi }}\]
If \(a = b - c\), then:
\[c = b - a\]
\[c = a + b\]
\[c = a - b\]
If \(v = u + at\), then \(a =\):
\[\frac{u-v}{t}\]
\[\frac{v-u}{t}\]
\[t(v-u)\]
If \(ab + c = bc - a\), then \(a\) = :
\[\frac{c(b-1)}{b+1}\]
\[\frac{c(b+1)}{b-1}\]
\[\frac{c(1-b)}{b+1}\]