Obraich a-mach co-aontar na loidhne dhìrich, a tha a' dol tron phuing (0,-7) le caisead de 4, san riochd \(y = mx + c\).
\[y = 4x + 7\]
\[y = - 7x + 4\]
\[y = 4x - 7\]
Obraich a-mach co-aontar na loidhne a tha a' dol tro na puingean C(0,-1) agus D(2,3).
\[y = 2x - 1\]
\[y = 4x - 1\]
\[y = 2x + 3\]
Obraich a-mach caisead na loidhne dhìrich le co-aontar \(4y - 8x - 1 = 0\).
-8
2
-2
Obraich a-mach caisead na loidhne dhìrich a tha co-shìnte ris an loidhne aig a bheil an co-aontar \(2y - x + 4 = 0\).
\[- 1\]
\[\frac{{ - 1}}{2}\]
\[\frac{1}{2}\]
Obraich a-mach caisead na loidhne dhìrich a tha a' dol tro na puingean P(-1,1) agus Q(5,13).
3
4
Obraich a-mach co-aontar na loidhne dhìrich a tha co-shìnte ri \(2y = 3x - 7\) agus a tha a' dol tro (0.5, -1).
\[y = 3x - 2.5\]
\[y = \frac{3}{2}x - \frac{7}{4}\]
\[2y = 3x - 7\]
Fuasgail an co-aontar: \(6x + 15 = 4x + 17\)
\[x = 1\]
\[x = 2\]
\[x = 4\]
Fuasgail an co-aontar: \(3(8 - x) + 1 = x + 5\)
\[x = 5\]
\[x = 10\]
\[x = - 20\]
Fuasgail an t-eas-aontar: \(5y - 16 \ge y + 32\)
\[y \ge 48\]
\[y \le 12\]
\[y \ge 12\]
Fuasgail na co-aontaran co-amail seo:
\[3x + y = 7\]
\[3x - y = 5\]
\[x = 2,\,y = 4\]
\[x = 2,\,y = 1\]
\[x = 1,\,y = 4\]
\[3x + 2y = 4\]
\[2x + y = 3\]
\[x = 1,\,y = 1\]
\[x = 2,\,y = - 1\]
\[5x + 2y = 20\]
\[x + 4y = 13\]
\[x = 3,\,y = 3\]
\[x = 2,\,y = 5\]
\[x = 3,\,y = \frac{5}{2}\]
Atharraich cuspair an fhoirmle gu t.
\[C = k{t^2}\]
\[t = {(\frac{C}{k})^2}\]
\[t = \sqrt {\frac{C}{k}}\]
\[t = {(Ck)^2}\]
Atharraich cuspair an fhoirmle gu \(a\).
\[{L^2} = {a^2} + {b^2}\]
\[a = \sqrt {{L^2} - {b^2}}\]
\[a = {L^2} - {b^2}\]
\[a = \sqrt {{L^2} + {b^2}}\]
Atharraich cuspair an fhoirmle gu \(h\).
\[A = \sqrt {\frac{{hw}}{{3600}}}\]
\[h = \frac{{3600A}}{w}\]
\[h = \frac{{{A^2}}}{{3600w}}\]
\[h = \frac{{3600{A^2}}}{w}\]