When p\(= \left( {\begin{array}{*{20}{r}} 3\\ 2 \end{array}} \right)\), q\(= \left( {\begin{array}{*{20}{r}} { - 1}\\ 4 \end{array}} \right)\) and r\(= \left( {\begin{array}{*{20}{r}} 0\\ 3 \end{array}} \right)\), find p - q.
\[\left( {\begin{array}{*{20}{r}}2\\{ - 2}\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{r}}4\\6\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{r}}4\\{ - 2}\end{array}} \right)\]
When p\(= \left( {\begin{array}{*{20}{r}} 3\\ 2 \end{array}} \right)\), q\(= \left( {\begin{array}{*{20}{r}} { - 1}\\ 4 \end{array}} \right)\) and r\(= \left( {\begin{array}{*{20}{r}} 0\\ 3 \end{array}} \right)\), find q + 2r.
\[\left( {\begin{array}{*{20}{r}}{ - 1}\\7\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{r}}1\\{10}\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{r}}{ - 1}\\10\end{array}} \right)\]
When p\(= \left( {\begin{array}{*{20}{r}} 3\\ 2 \end{array}} \right)\), q\(= \left( {\begin{array}{*{20}{r}} { - 1}\\ 4 \end{array}} \right)\) and r\(= \left( {\begin{array}{*{20}{r}} 0\\ 3 \end{array}} \right)\), find -p - 2q.
\[\left( {\begin{array}{*{20}{r}}{ - 1}\\{ - 10}\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{r}}5\\{6}\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{r}}{ - 2}\\{ - 6}\end{array}} \right)\]
When p\(=\left({\begin{array}{r}3\\2\end{array}}\right)\), q\(=\left({\begin{array}{r}-1\\4\end{array}}\right)\) and r\(=\left({\begin{array}{r}0\\3\end{array}}\right)\), find q + r - p.
\[\left({\begin{array}{r}-4\\5\end{array}}\right)\]
\[\left({\begin{array}{r}2\\5\end{array}}\right)\]
\[\left({\begin{array}{r}2\\9\end{array}}\right)\]
When p\(=\left({\begin{array}{r}3\\2\end{array}}\right)\), q\(=\left({\begin{array}{r}-1\\4\end{array}}\right)\) and r\(=\left({\begin{array}{r}0\\3\end{array}}\right)\), find p - q + r.
\[\left({\begin{array}{r}2\\-5\end{array}}\right)\]
\[\left({\begin{array}{r}2\\1\end{array}}\right)\]
\[\left({\begin{array}{r}4\\1\end{array}}\right)\]
\(\mathbf{j} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}\). What is 4j?
\[\begin{pmatrix} 7 \\ 9 \end{pmatrix}\]
\[\begin{pmatrix} 12 \\ 20 \end{pmatrix}\]
\[\begin{pmatrix} -1 \\ 1 \end{pmatrix}\]
\(\mathbf{k} = \begin{pmatrix} 6 \\ 10 \end{pmatrix}\). What is \(\frac{1}{2}k\)?
\[\begin{pmatrix} 3 \\ 5 \end{pmatrix}\]
\[\begin{pmatrix} 6.5 \\ 10.5 \end{pmatrix}\]
When j\(=\left({\begin{array}{r}3\\5\end{array}}\right)\) and k\(=\left({\begin{array}{r}6\\10\end{array}}\right)\), find 2j - k.
\[\left({\begin{array}{r}12\\20\end{array}}\right)\]
\[\left({\begin{array}{r}0\\0\end{array}}\right)\]
\[\left({\begin{array}{r}9\\15\end{array}}\right)\]
What is the resultant vector of \(\begin{pmatrix} 5 \\ -2 \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \end{pmatrix}\)?
\[\begin{pmatrix} 2 \\ -3 \end{pmatrix}\]
\[\begin{pmatrix} 8 \\ -1 \end{pmatrix}\]
\[\begin{pmatrix} 8 \\ -3 \end{pmatrix}\]
What is the resultant vector of \(\begin{pmatrix} -2 \\ 4 \end{pmatrix} - \begin{pmatrix} 3 \\ 7 \end{pmatrix}\)?
\[\begin{pmatrix} -5 \\ 3 \end{pmatrix}\]
\[\begin{pmatrix} -5 \\ -3 \end{pmatrix}\]
\[\begin{pmatrix} 1 \\ -3 \end{pmatrix}\]