Using vector components test questions

1

When p\(= \left( {\begin{array}{*{20}{r}} 3\\ 2 \end{array}} \right)\), q\(= \left( {\begin{array}{*{20}{r}} { - 1}\\ 4 \end{array}} \right)\) and r\(= \left( {\begin{array}{*{20}{r}} 0\\ 3 \end{array}} \right)\), find p - q.

2

When p\(= \left( {\begin{array}{*{20}{r}} 3\\ 2 \end{array}} \right)\), q\(= \left( {\begin{array}{*{20}{r}} { - 1}\\ 4 \end{array}} \right)\) and r\(= \left( {\begin{array}{*{20}{r}} 0\\ 3 \end{array}} \right)\), find q + 2r.

3

When p\(= \left( {\begin{array}{*{20}{r}} 3\\ 2 \end{array}} \right)\), q\(= \left( {\begin{array}{*{20}{r}} { - 1}\\ 4 \end{array}} \right)\) and r\(= \left( {\begin{array}{*{20}{r}} 0\\ 3 \end{array}} \right)\), find -p - 2q.

4

When p\(=\left({\begin{array}{r}3\\2\end{array}}\right)\), q\(=\left({\begin{array}{r}-1\\4\end{array}}\right)\) and r\(=\left({\begin{array}{r}0\\3\end{array}}\right)\), find q + r - p.

5

When p\(=\left({\begin{array}{r}3\\2\end{array}}\right)\), q\(=\left({\begin{array}{r}-1\\4\end{array}}\right)\) and r\(=\left({\begin{array}{r}0\\3\end{array}}\right)\), find p - q + r.

6

\(\mathbf{j} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}\). What is 4j?

7

\(\mathbf{k} = \begin{pmatrix} 6 \\ 10 \end{pmatrix}\). What is \(\frac{1}{2}k\)?

8

When j\(=\left({\begin{array}{r}3\\5\end{array}}\right)\) and k\(=\left({\begin{array}{r}6\\10\end{array}}\right)\), find 2j - k.

9

What is the resultant vector of \(\begin{pmatrix} 5 \\ -2 \end{pmatrix} + \begin{pmatrix} 3 \\ -1 \end{pmatrix}\)?

10

What is the resultant vector of \(\begin{pmatrix} -2 \\ 4 \end{pmatrix} - \begin{pmatrix} 3 \\ 7 \end{pmatrix}\)?