What does \({x^2} + 4x - 5\) expressed in the form \({(x + a)^2} + b\) equal?
\[{(x + 2)^2} - 5\]
\[{(x + 2)^2} - 9\]
\[{(x + 4)^2} - 20\]
What could the graph below represent?
\[y = 1 + 2\sin x^\circ\]
\[y = 1 + \sin 2x^\circ\]
\[y = \sin (2x + 1)\]
If \(h(x) = {x^3}\) and \(f(x) = \cos 2x\), what is \(f(h(x))\) equal to?
\[\cos 2{x^3}\]
\[{\cos ^3}2x\]
\[{\cos ^3}8{x^3}\]
If \(f(x) = 3{x^2}\) and \(g(x) = x - 4\), what is \(g(f(x))\) equal to?
\[9{x^2} - 4\]
\[3{x^2} - 4\]
\[3{(x - 4)^2}\]
Functions 'g' and 'h' are defined by \(g(x) = \frac{1}{x}\) and h(x) = 8 - 5x where \(x \in R\). What does \(h(g(x))\) equal?
\[\frac{1}{{8 - 5x}}\]
\[\frac{3}{x}\]
\[\frac{{8x - 5}}{x}\]
When \(2{x^2} + 8x - 3\) is written in the form \(a{(x + b)^2} + c\), what are the values of 'a', 'b' and 'c'?
\[a = 2,\,b = 2,\,c = - 11\]
\[a = 2,\,b = 2,\,c = - 7\]
\[a = 2,\,b = 2,\,c = - 3\]
What is \(9 - 4x - {x^2}\) expressed in the form \(9 - {(x + q)^2}\) equal to?
\[5 - {(x - 2)^2}\]
\[13 - {(x + 2)^2}\]
\[13 - {(x - 2)^2}\]