\[\overrightarrow {PQ} = \left( {\begin{array}{*{20}{r}} { - 1}\\ 4\\ { - 2} \end{array}} \right)\]
What is the magnitude of \(\overrightarrow {PQ}\).
\[\sqrt 8\]
\[\sqrt 11\]
\[\sqrt 21\]
\(A=\left(\begin{array}{r}-1\\2\\3\end{array}\right)and~B=\left(\begin{array}{r}3\\-2\\4\end{array}\right)\).
Find \(\overrightarrow{AB}\).
\[\left(\begin{array}{r}4\\-4\\1\end{array}\right)\]
\[\left(\begin{array}{r}2\\-4\\1\end{array}\right)\]
\[\left(\begin{array}{r}4\\0\\1\end{array}\right)\]
Find the magnitude of AB.
\[\sqrt{33}\]
\[\sqrt{3}\]
\[1\]
\(P = \left( {\begin{array}{*{20}{c}} 1\\ 3\\ 2 \end{array}} \right)\,and\,Q = \left( {\begin{array}{*{20}{r}} { - 3}\\ 4\\ { - 2} \end{array}} \right)\).
Find \(\left| {\overrightarrow {PQ} } \right|\).
\[\sqrt {33}\]
\[\left( {\begin{array}{*{20}{r}}{ - 4}\\1\\{ - 4}\end{array}} \right)\]
\[\sqrt {15}\]
\[\left|{\overrightarrow{OP}}\right|=\left(\begin{array}{c}1\\4\\8\end{array}\right)\]
Find \(\left|{\overrightarrow{OP}}\right|\)
\[13\]
\[9\]
\[\sqrt{81}\]