How many solutions are there to the equation \(sinx = -0.9\) where \(0\leq \times \textless 360\)?
None
One
Two
How many solutions are there to the equation \(sinx = 2\) where \(0 \leq \times \textless 360\)?
Solve the equation \(sinx = 0.5\) where \(0 \leq \times \textless 360\).
\(x = 30^\circ\) and \(x =210^\circ\)
\(x = 30^\circ\) and \(x =150^\circ\)
\(x = 210^\circ\) and \(x = 330^\circ\)
Solve the equation \(cosx = -0.5\) where \(0\leq x\textless 2\pi\).
\(x=\frac{\pi }{3}\), \(x=\frac{2\pi }{3}\)
\(x=\frac{2\pi }{3}\), \(x=\frac{11\pi }{6}\)
\(x=\frac{2\pi }{3}\), \(x=\frac{4\pi }{3}\)
Solve the equation \(5cosx - 2=0\) where \(0\leq x\textless 360\).
\(x = 66.4^\circ\) and \(x = 293.6^\circ\)
\(x = 66.4^\circ\) and \(x = 336.4^\circ\)
\(x = 113.6 ^\circ\) and \(x = 246.4^\circ\)
Solve the equation \(\sqrt{2}cosx-1=0\) where \(0\leq x\textless\pi\)
\[x=\frac{\pi }{4}\]
\(x=\frac{\pi }{4}\), \(\frac{3\pi }{4}\)
\(x=\frac{\pi }{4}\), \(\frac{7\pi }{4}\)
Solve the equation \(2\cos3x+1=0\), where \(0\leq x\textless 360^\circ\)
\[x=40^\circ ,\,80^\circ\]
\[x=60^\circ,\,120^\circ,\,240^\circ\]
\[x=40^\circ,\,80^\circ,\,160^\circ,\,200^\circ,\,280^\circ,\,320^\circ\]
Solve the equation \(3\,cos\,x+1 = 0.766\), where \(0\leq x\leq 540^\circ\)
\[x = 94.5^\circ,\,265.5^\circ,\,454.5^\circ\]
\[x = 94.5^\circ,\,265.5^\circ\]
\[x = 85.5^\circ,\,274.5^\circ,\,445.5^\circ\]
Solve the equation \(6sin^{2}x+sin\,x-1=0\), where \(0\leq x\leq 2\pi\)
\[x=\frac{\pi }{6},\frac{5\pi }{6}\]
\[x=0.3,2.8,\frac{7\pi }{6},\frac{11\pi }{6}\]
\[x=\frac{7\pi }{6},\frac{11\pi }{6}\]
Solve the equation \(2\,cos (x+60)=\sqrt{3}\), where \(0\leq x\leq 360^\circ\)
\[x=270^\circ ,\,330^\circ\]
\[x =30^\circ ,\,330^\circ\]
\[x =150^\circ,\,210^\circ\]