Factorise \(3k + 12\)
\[3(k + 3)\]
\[3(k + 4)\]
\[3(k + 12)\]
Factorise \(4{b^4} + 6{b^3} + 2{b^2}\)
\[{b^2}(4{b^2} + 6b + 2)\]
\[2{b^2}(2{b^2} + 3b + 1)\]
Calculate by factorising \({13^2} - {9^2}\)
\[16\]
\[88\]
\[484\]
Factorise \({x^2} + 12x + 35\)
\[(x + 7)(x + 5)\]
\[(x + 4)(x + 8)\]
\[(x + 35)(x + 1)\]
Factorise \(2{x^2} + 13x + 6\)
\[(2x + 1)(x + 6)\]
\[(2x + 6)(x + 1)\]
\[(2x - 6)(x - 1)\]
Factorise fully \(2{x^2} - 18\)
\[2(x + 9)(x - 9)\]
\[2(x - 3)(x + 3)\]
\[2({x^2} - 3)\]
Factorise fully \(12{x^2} - 27{y^2}\)
\[3(4{x^2} - 9{y^2})\]
\[3(2x - 3y)(2x + 3y)\]
\[3(4x - 9y)(4x + 3y)\]
Complete the square on the following quadratic function into the form \({(x + b)^2} + c\):
\[y = {x^2} + 8x + 2\]
\[y = {(x + 8)^2} - 62\]
\[y = {(x + 4)^2} - 14\]
\[y = {(x + 4)^2} + 2\]
\[y = {x^2} + 6x + 15\]
\[y = {(x + 3)^2} + 6\]
\[y = {(x + 3)^2} - 6\]
\[y = {(x + 6)^2} + 24\]
\[y = {x^2} - 8x - 5\]
\[y = {(x + 8)^2} + 11\]
\[y = {(x - 8)^2} + 21\]
\[y = {(x - 4)^2} - 21\]