Defnyddia'r dull amnewid i ddatrys yr hafaliadau cydamserol hyn: \({y}={3}{x}\), \({2}{x}+{y}={5}\).
\[{x}={2},~{y}={6}\]
\[{x}={0},~{y}={0}\]
\[{x}={1},~{y}={3}\]
Defnyddia'r dull amnewid i ddatrys yr hafaliadau cydamserol hyn: \({y}={-2}{x}\), \({3}{x}-{2}{y}={-7}\).
\[{x}={1},~{y}={-2}\]
\[{x}={-1},~{y}={2}\]
\[{x}={-7},~{y}={14}\]
Defnyddia'r dull algebraidd i ddatrys yr hafaliadau cydamserol hyn: \({2}{x}+{y}={8}\), \({5}{x}-{y}={13}\).
\[{x}={3},~{y}={-3}\]
\[{x}={3},~{y}={2}\]
\[{x}={1},~{y}={6}\]
Defnyddia'r dull algebraidd i ddatrys yr hafaliadau cydamserol hyn: \({x}+{y}={1}\), \({x}+{4}{y}={-23}\).
\[{x}={7},~{y}={8}\]
\[{x}={8},~{y}={-7}\]
\[{x}={9},~{y}={-8}\]
Defnyddia'r dull algebraidd i ddatrys yr hafaliadau cydamserol hyn: \({2}{x}+{y}={7}\), \({10}{x}+{y}={11}\)
\[{x}={2},~{y}={3}\]
\[{x}={-0.5},~{y}={8}\]
\[{x}={0.5},~{y}={6}\]
Defnyddia'r dull algebraidd i ddatrys yr hafaliadau cydamserol hyn: \({2}{p}-{7}{q}={13}\), \({2}{p}-{3}{q}={1}\).
\[{p}={17},~{q}={3}\]
\[{p}={5},~{q}={3}\]
\[{p}={-4},~{q}={-3}\]
Defnyddia'r dull algebraidd i ddatrys yr hafaliadau cydamserol hyn: \({4}{w}+{3}{z}={9}\), \({8}{w}+{5}{z}={13}\).
\[{w}={4},~{z}={-4}\]
\[{w}={6},~{z}={-5}\]
\[{w}={-1.5},~{z}={5}\]
Defnyddia'r dull graffigol i ddatrys yr hafaliadau cydamserol hyn: \({y}={3}{x}-{3}\), \({y}={-x}+{5}\).
\[{x}={4},~{y}={9}\]
\[{x}={-1},~{y}={-6}\]
Defnyddia'r dull graffigol i ddatrys yr hafaliadau cydamserol hyn: \({y}+{2}{x}={6}\), \({y}={x}+{3}\).
\[{x}={1},~{y}={4}\]
\[{x}={3},~{y}={6}\]
\[{x}={0},~{y}={6}\]
Defnyddia'r dull graffigol i ddatrys yr hafaliadau cydamserol hyn: \({x}+{2}{y}={3}\), \({3}{x}-{4}{y}={7}\).
\[{x}={1},~{y}={1}\]
\[{x}={-1},~{y}={2.5}\]
\[{x}={7},~{y}={-2}\]