Multiply out the brackets for the expression \(8(4x + 5)\).
\[32x + 5\]
\[24x + 40\]
\[32x + 40\]
Expand the bracket \(4(2m - 7)\).
\[8m – 28\]
\[6m – 11\]
\[6m - 7\]
Expand and simplify \(5 + 2(3a + 7)\).
\[21a + 49\]
\[21a + 7\]
\[6a + 19\]
SImplify the expression \(9(4x - 5y)\).
\[36x + 45y\]
\[-9x\]
\[36x - 45y\]
Simplify the expression \(9x + 5 + 3y + 7x - 2\).
\[16x + 3y + 3\]
\[16x + 3y + 7\]
\[19xy + 3\]
Remove the brackets and simplify the expression \(4(t - 2) + 3\).
\[4t + 1\]
\[4t + 11\]
\[4t - 5\]
Multiply out the brackets and simplify the expression \(3(y + 1) + 4(2y + 5)\).
\[11y + 6\]
\[11y + 23\]
\[11y + 8\]
Simplify the expression \(5x + 7x^{2} - x + x^{2}\)
\[4x + 8x^{2}\]
\[5x + 7x^{2}\]
\[4x + 6x^{2}\]
Gather the like terms: \(7 - 4p +10p + 5\)
\[12 + 4p + 10p\]
\[12 + 6p\]
\[12 + 14p\]
Collect like terms: \(6a^{2} - 2a ^{2}\)
\[4a ^{2} \]
\[2a ^{2} \]
\[8a ^{2} \]