Which of the following is a surd?
\[\sqrt {64}\]
\[\sqrt {18}\]
\[\sqrt {100}\]
Simplify \(\sqrt {75}\)
\[5\sqrt 3\]
\[5\sqrt {15}\]
\[15\sqrt 5\]
Simplify \(\sqrt 6 \times \sqrt 8\)
\[\sqrt {48}\]
\[2\sqrt {12}\]
\[4\sqrt 3\]
Simplify \(\frac{{\sqrt 5 }}{{\sqrt {90} }}\) giving your answer with a rational denominator.
\[\sqrt {\frac{5}{{90}}}\]
\[\frac{1}{{3\sqrt 2 }}\]
\[\frac{{\sqrt 2 }}{6}\]
Simplify \(\sqrt {0.49}\)
\[\sqrt {\frac{{49}}{{100}}}\]
\[0.7\]
\[0.07\]
Simplify \(\sqrt 2 + \sqrt {18}\)
\[4\sqrt 2\]
\[3\sqrt 2\]
\[6\]
Rationalise the denominator of:\(\frac{5}{4-\sqrt{6}}\)
\[2+\sqrt{3}\]
\[\frac{4+\sqrt{6}}{2}\]
\[-\frac{4+\sqrt{6}}{2}\]
Solve the equation \(2{x^2} + 3 = 57\)
\[\sqrt {30}\]
\[\sqrt {27}\]
\[3\sqrt 3\]
Calculate the missing side, leaving your answer as a surd in its simplest form.
\[3\sqrt 2 m\]
\[\sqrt {18} m\]
\[\sqrt {82} m\]
Rationalise the denominator of \(\frac{4}{7-3\sqrt{2}}\).
\[\frac{4}{4\sqrt{2}}\]
\[\frac{28+12\sqrt{2}}{31}\]
\[\frac{28-12\sqrt{2}}{67-42\sqrt{2}}\]