Cleachd an diagram agus thoir ainm dhan earrann-loidhne le cùrsa
a tha a' riochdachadh s + q.
p
r
t
a tha a' riochdachadh r - p.
-s
-t
Sgrìobh na co-chomharran aig R.
(0, 2, 0)
(0, 4, 0)
(4, 2, 0)
Sgrìobh na co-chomharran aig T.
(4, 0, 0)
(4, 0, 3)
Nuair a tha p\(= \left( {\begin{array}{*{20}{c}} 3\\ 2 \end{array}} \right)\), q\(= \left( {\begin{array}{*{20}{c}} { - 1}\\ 4 \end{array}} \right)\) agus r\(= \left( {\begin{array}{*{20}{c}} 0\\ 3 \end{array}} \right)\),
obraich a-mach p - q.
\[\left( {\begin{array}{*{20}{c}}2\\{ - 2}\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{c}}4\\6\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{c}}4\\{ - 2}\end{array}} \right)\]
obraich a-mach q + 2r.
\[\left( {\begin{array}{*{20}{c}}{ - 1}\\7\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{c}}1\\{10}\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{c}}{ - 1}\\10\end{array}} \right)\]
obraich a-mach -p - 2q.
\[\left( {\begin{array}{*{20}{c}}{ - 1}\\{ - 10}\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{c}}5\\{6}\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{c}}{ - 2}\\{ - 6}\end{array}} \right)\]
Nuair a tha a\(= \left( {\begin{array}{*{20}{c}} { - 2}\\ 1\\ 5 \end{array}} \right)\) agus b\(= \left( {\begin{array}{*{20}{c}} 3\\ { - 2}\\ 4 \end{array}} \right)\), obraich a-mach a + b.
\[\left( {\begin{array}{*{20}{c}}1\\{ - 1}\\9\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{c}}{ - 1}\\3\\9\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{c}}1\\3\\1\end{array}} \right)\]
Nuair a tha a\(= \left( {\begin{array}{*{20}{c}} { - 2}\\ 1\\ 5 \end{array}} \right)\) agus b\(= \left( {\begin{array}{*{20}{c}} 3\\ { - 2}\\ 4 \end{array}} \right)\), obraich a-mach 3b - a.
\[\left( {\begin{array}{*{20}{c}}5\\{ - 3}\\{ - 1}\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{c}}{11}\\{ - 7}\\7\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{c}}15\\{ - 9}\\{ - 3}\end{array}} \right)\]
\[\overrightarrow {PQ} = \left( {\begin{array}{*{20}{c}} { - 1}\\ 4\\ { - 2} \end{array}} \right)\]
Dè a' mheudachd a th' aig \(\overrightarrow {PQ}\).
\[\sqrt 8\]
\[\sqrt 11\]
\[\sqrt 21\]
\(A = \left( {\begin{array}{*{20}{c}} { - 1}\\ 2\\ 3 \end{array}} \right)\,agus\B = \left( {\begin{array}{*{20}{c}} 3\\ { - 2}\\ 4 \end{array}} \right)\).
Obraich a-mach \(\overrightarrow {AB}\)
\[\left( {\begin{array}{*{20}{c}}{4}\\{ - 4}\\1\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{c}}{2}\\{ - 4}\\1\end{array}} \right)\]
\[\left( {\begin{array}{*{20}{c}}4\\0\\1\end{array}} \right)\]
\(P = \left( {\begin{array}{*{20}{c}} 1\\ 3\\ 2 \end{array}} \right)\,agus\,Q = \left( {\begin{array}{*{20}{c}} { - 3}\\ 4\\ { - 2} \end{array}} \right)\).
Obraich a-mach \(\left| {\overrightarrow {PQ} } \right|\)
\[\sqrt {33}\]
\[\left( {\begin{array}{*{20}{c}}{ - 4}\\1\\{ - 4}\end{array}} \right)\]
\[\sqrt {15}\]