O wybod bod \({x}\) yn rhif cyfan, beth ydy gwerthoedd posib \({x}\) os ydy \({x}\textgreater{5}\)?
\[{x}={5},{6},{7},{8},{...}\]
\[{x}={4},{3},{2},{1},{...}\]
\[{x}={6},{7},{8},{9},{...}\]
Os ydy \({n}\) yn rhif naturiol, beth ydy gwerthoedd \({n}\) os ydy \({n}\leq{6}\)?
\[{n}={0},{1},{2},{3},{4},{5},{6}\]
\[{n}={6},{5},{4},{3},{...}\]
\[{n}={1},{2},{3},{4},{5},{6}\]
Beth ydy'r anhafaledd sy'n cael ei ddangos yn y diagram hwn?
\[{x}\geq{-1}\]
\[{x}~\textgreater~{-1}\]
\[{x}~\textgreater~{1}\]
\[{x}~\textless~{2}\]
\[{x}={1},{0},{-1},{-2},{...}\]
\[{x}~\textgreater~{2}\]
\[{-1}~\textless~{x}\leq{3}\]
\[{-1}\leq{x}~\textless~{3}\]
\[{-1}~\textgreater~{x}\geq{3}\]
Datrysa'r anhafaledd \({4}{z}+{7}~\textless~{21}\)
\[{x}={3}\]
\[{x}~\textless~{4}\]
\[{x}~\textless~{3.5}\]
Datrysa'r anhafaledd \({-2}{x}~\textless~{7}\)
\[{x}~\textless~{-3.5}\]
\[{x}~\textgreater~{-3.5}\]
\[{x}~\textgreater~{3.5}\]
Datrysa'r anhafaledd \({8}-{5}{y}~\textgreater~{43}\)
\[{y}~\textgreater~{7}\]
\[{y}~\textgreater~{-7}\]
\[{y}~\textless~{-7}\]
Datrysa'r anhafaledd \({9}+{7}{x}\geq{29}+{2}{x}\)
\[{x}\leq{4}\]
\[{x}~\textgreater~{4}\]
\[{x}\geq{4}\]
Mae \({n}\) yn rhif cyfan. Beth ydy gwerthoedd posib \({n}\) os ydy \({n}+{6}~\textless~{12}\) a \({3}-{n}\leq{1}\)?
\[{n}={5},{4},{3},{2},{1},{0},{-1},{...}\]
\[{n}={2},{3},{4},{5},{6}\]
\[{n}={2},{3},{4},{5}\]