Dè an co-aontar a th' aig axis-cothromachaidh a' pharabola gu h-ìosal?
\[x = 1\]
\[x = 3\]
\[x = 5\]
Dè na co-chomharran a th' aig puing-tionndaidh a' cheàrnanaich leis a' cho-aontar \(y = - 2(x - 1)(x - 5)\)?
(1,5)
(3,-2)
(3,8)
Obraich a-mach co-aontar a' pharabola gu h-ìosal:
\[y = {(x - 2)^2} + 1\]
\[y = - {(x + 2)^2} - 1\]
\[y = {(x + 2)^2} + 5\]
Tha an diagram a' sealltainn graf an fhuincsean \(y = - 2{x^2} + 12x - 10\).
Cleachd an graf agus fuasgail an co-aontar \(- 2{x^2} + 12x - 10 = 0\)
\[x = 1,\,x = 5\]
\[x = - 10\]
Fuasgail an co-aontar ceàrnanach a leanas:
\[(x - 3)(x + 4) = 0\]
\[x = 3\,agus\,x = 4\]
\[x = 3\,agus\,x = - 4\]
\[x = - 3\,agus\,x = 4\]
\[{x^2} + 3x - 28 = 0\]
\[x = - 7\,agus\,x = 4\]
\[x = - 7\,agus\,x = - 4\]
\[x = 7\,agus\,x = 4\]
\[6{x^2} - 7x - 3 = 0\]
\[x = - 3\,agus\,x = - 2\]
\[x = - \frac{1}{3}\,agus\,x = \frac{3}{2}\]
\[x = \frac{1}{3}\,agus\,x = - \frac{3}{2}\]
Ma tha \({b^2} - 4ac \ge 0\), dè nàdar nam freumhan?
Fìor agus neo-ionann
Fìor agus co-ionann
Neo-fhìor
Fuasgail an co-aontar ceàrnanach a leanas gu 2 ionad deicheach:
\[2{x^2} + 3x - 1 = 0\]
\[x = - 0.28\,agus\,x = - 1.78\]
\[x = - 0.28\,agus\,x = 1.78\]
\[x = 0.28\,agus\,x = - 1.78\]
\[3{x^2} + 8x + 1 = 0\]
\[x = - 0.13\,agus\,x = - 2.54\]
\[x = - 0.13\,agus\,x = 2.54\]
\[x = 0.13\,agus\,x = - 2.54\]
\[10{x^2} + x - 1 = 0\]
\[x = - 0.27\,agus\,x = - 0.37\]
\[x = - 0.27\,agus\,x = 0.37\]
\[x = 0.27\,agus\,x = - 0.37\]
\[3 + 4x - {x^2} = 0\]
\[x = - 0.65\,agus\,x = - 4.65\]
\[x = - 0.65\,agus\,x = 4.65\]
\[x = 0.65\,agus\,x = - 4.65\]