Add these two fractions together.
\[\frac{2}{3} + \frac{1}{9}\]
\[\frac{3}{{12}}\]
\[\frac{7}{{9}}\]
\[\frac{1}{{4}}\]
Work out \(\frac{4}{7} + \frac{2}{5}\).
\[\frac{6}{12}\]
\[\frac{34}{35}\]
\[\frac{34}{70}\]
Subtract these two fractions.
\[\frac{4}{5} - \frac{1}{3}\]
\[\frac{3}{2}\]
\[\frac{3}{5}\]
\[\frac{7}{15}\]
Multiply these fractions.
\[\frac{6}{7} \times \frac{{14}}{{15}}\]
\[\frac{4}{5}\]
\[\frac{1}{15}\]
\[\frac{28}{35}\]
Divide these fractions.
\[\frac{2}{3} \div \frac{3}{4}\]
\[\frac{1}{2}\]
\[\frac{8}{9}\]
\[1\]
Add the fractions:
\[2\frac{1}{2} + 1\frac{1}{4}\]
\[2\frac{3}{4}\]
\[3\frac{3}{4}\]
\[3\frac{2}{6}\]
\[4\frac{3}{5} + 2\frac{3}{4}\]
\[1\frac{7}{{20}}\]
\[7\frac{7}{{20}}\]
\[6\frac{1}{{3}}\]
Subtract the fractions:
\[5\frac{2}{5} - 2\frac{2}{3}\]
\[4\frac{1}{{15}}\]
\[3\frac{11}{{15}}\]
\[2\frac{11}{{15}}\]
Multiply the fractions:
\[4\frac{4}{5} \times 1\frac{1}{9}\]
\[5\frac{1}{{3}}\]
\[5\frac{2}{{6}}\]
\[4\frac{4}{{45}}\]
Work out \(3\: \frac{1}{2}\:\times\:1\:\frac{3}{7}\) , giving your answer in its simplest form.
\[\frac{70}{40}\]
\[3\: \frac{3}{14}\]
\[5\]